Формула Байеса

№1 В ящике сложены детали: N деталей с первого участка, M— со второго и P— с третьего. Вероятность того, что деталь, изготовленная на втором участке, отличного качества, равна 0,6, а для деталей, изготовленных на первом и третьем участках, вероятности равны 0,8. Найдите вероятность того, что наудачу извлеченная деталь окажется отличного качества.

№2 В зоомагазине в трех аквариумах плавает по N рыбок. При этом в первом К1 золотых рыбок, во втором – К2, в третьем – К3. Случайным образом выбирается аквариум и в нем одна рыбка.

А) Какова вероятность, что это будет золотая рыбка?

Б) Рыбка оказалась золотой. Какова вероятность, что она выбрана из второго аквариума?

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
N	10	11	12	13	14	15	16	17	18	19	20	10	11	12	13	14
M	15	16	17	18	19	20	21	22	23	24	25	26	27	15	16	17
P	17	18	19	20	21	22	23	24	25	26	27	15	16	17	18	19
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
<u>№</u> N		18	19 17	20 18	21 19	22 20	23 10	24 11	25	16	27 14	28 15	29 16	30 17		
№ N M	1/		17					11	12					17		

Функция распределения ДВС.

№1. Случайная величина X задана рядом распределения.

Xi	-3	0	1	4
p_{i}	P_1	P_2	P_3	P_4

Найти вероятности P(X<0), P(X>0), P(-1< X<3). Найти функцию распределения

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\mathbf{P}_1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1
P_2	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4
P_3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3
P_4	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
\mathbf{P}_1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3		
P_2	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2		
P_3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1		
P_4	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4		

Плотность распределения

Используя данные предыдущей самостоятельной работы, построить полигон распределения. Используя функцию распределения, найти вероятности.

Математическое ожидание

Используя условия самостоятельной работы по теме «Функция распределения», вычислить математическое ожидание и дисперсию.

Моменты ДСВ

Используя задачи предыдущего урока, найти начальные и центральные моменты первого, второго и третьего порядков, коэффициент асимметрии и коэффициент эксцесса.

Формула Бернулли

В некоторой области вероятность того, что человек увидит цветную рекламу, равна Р. Выбраны случайно N человек. Чему равна вероятность того, что: а) 5 из них увидят рекламу; б) по крайней мере 2 человека видели ее.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\mathbf{P}_1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1
P_2	7	8	9	10	6	7	8	9	10	6	7	8	9	10	6	7
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
\mathbf{P}_1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3	0,2	0,1	0,4	0,3		
P_2	8	9	10	6	7	8	9	10	6	7	8	9	10	6		

Биномиальное распределение. Распределение Пуассона

№1. В некоторой области вероятность того, что человек увидит цветную рекламу, равна Р. Выбраны случайно N человек. Составьте закон распределения числа людей, увидевших рекламу. Найдите МХ, DX, m₀.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
P_1	0,4	0,3	0,2	0,1	0,5	0,4	0,3	0,2	0,1	0,5	0,4	0,3	0,2	0,1	0,5	0,4
N	5	6	7	8	9	4	5	6	7	8	9	4	5	6	7	8
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
№ P ₁	17 0,3	18 0,2	19 0,1	20 0,5	21 0,4	22 0,3	23 0,2	24 0,1	25 0,5	16 0,4		28 0,2	29 0,1	30 0,5		

№2. Вероятность детали быть бракованной равна р. Произведено 1000 деталей. Какова вероятность того, что в этой партии точно 2 бракованных детали? Более 2?

		, , , , , , , , , , , , , , , , , , ,											
№	1	2	3	4	5	6	7	8	9	10	11	12	13
P	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,001	0,002	0,003	0,004
№	14	15	16	17	18	19	20	21	22	23	24	25	26
P	0,005	0,006	0,007	0,008	0,009	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008
№	27	28	29	30									
P	0,009	0,001	0,002	0,003									

Функция и плотность распределения НСВ

№2. Найти Р(0<X<0,1). Если функция плотности случайной величины X имеет следующий вид и номер варианта совпадает с

$$f(x) = \begin{cases} 0 & npu \quad x < 0 \\ nx & npu \quad 0 \le x \le \sqrt{\frac{2}{n}}; \\ 0 & npu \quad x > \sqrt{\frac{2}{n}}. \end{cases}$$

Математическое ожидание и дисперсия НСВ

Используя условия самостоятельной работы по теме «Функция распределения», вычислить математическое ожидание и дисперсию.

Моменты НВС

Используя задачи предыдущего урока, найти начальные и центральные моменты первого, второго и третьего порядков.

Равномерное распределение

№1. Случайная величина X – время ожидания дождя в сутках – имеет равномерное распределение на отрезке [0,N]. Найти МХ, DX, вероятности P(X<5), P(X>3).

№2. Количество X принимаемых за час звонков по домашнему телефону имеет распределение Пуассона. Среднее количество принимаемых за час звонков – λ . Какова вероятность, что будет принято за час точно 3 звонка? Более 2? Найти МХ, DX.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
N	1	2	3	4	5	6	7	8	9	11	12	13	14	15	16	17
λ	1	2	3	4	5	7	8	9	10	1	2	3	4	5	7	8
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
N	18	19	21	22	23	24	25	26	27	28	29	31	32	33		
3	0	10	1	2	3	1	5	6	7	8	Q	10	1	2		

Нормальное распределение

Случайная величина X имеет нормальное распределение N(a, σ). Найти P(X<1), P(-1<X<1), P(-5<X<5), P(- σ <X-a< σ), P(-2 σ <X-a<2 σ).

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
σ	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
a	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
σ	8	9	1	2	3	4	5	6	7	8	9	1	2	3		

Неравенство Маркова – Чебышева

Вес мужчины – случайная величина со средним 80 кг и дисперсией Д. Оценить вероятность того, что вес случайно встреченного мужчины отличается от среднего на величину большую а.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a	10	11	12	13	14	15	5	6	7	8	9	10	11	12	13	14
Д	10	15	20	25	30	35	10	15	20	25	30	35	10	15	20	25
№	17	18	19	20	21	22	23	24	25	16	27	28	29	30		
a	15	5	6	7	8	9	10	11	12	13	14	15	5	6		
Д	30	35	10	15	20	25	30	35	10	15	20	25	30	35		

Теорема Чебышева. Теорема Бернулли

№1. Принимая одинаково вероятным рождение мальчика и девочки, оцените вероятность того, что из 1000 родившихся детей мальчиков будет от 465 до 535 (от 560 до 670).

№2. Подлежат исследованию 400 (500) проб руды. Вероятность промышленного содержания металла в каждой пробе для всех проб одинакова и равна 0,8 (0,7). Оцените вероятность того, что число проб с промышленным содержанием металла будет заключено между 290 и 350.

Теорема Лапласа

Игральную кость бросают 600 раз. Какова вероятность того, что число выпадений шестерки будет между к₁ и к₂?

№	1	2	3	4	5	6	7	8	9	10	11	12	13
K_1	80	81	82	83	84	85	86	87	88	89	90	91	92
K_2	120	119	118	117	116	115	114	113	112	111	110	109	108
№	14	15	16	17	18	19	20	21	22	23	24	25	26
K_1	93	94	95	96	95	94	93	92	91	90	89	88	87
K_2	107	106	105	104	103	102	101	100	103	105	107	109	111
№	27	28	29	30									
K_1	86	85	84	83									
К2	113	115	117	119									